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Classical dynamics on graphs
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We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron
operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic proper-
ties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the
zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the
particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier trans-
forms that decompose the observables and probability densities into sectors corresponding to different values
of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a
Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the
hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open
graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle
on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before
it escapes.
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I. INTRODUCTION

The study of classical dynamics on graphs is motivated
the recent discovery that quantum graphs have similar s
tral statistics of energy levels as the classically chaotic qu
tum systems@1,2#. Since this pioneering work by Kottos an
Smilansky, several studies have been devoted to the pro
ties of quantum graphs@3–7# and to their applications in
mesoscopic physics@8#. However, the classical dynamic
which is of great importance for the understanding of
short-wavelength quantum properties, has not yet been
sidered in detail. In Refs.@1,2#, a classical dynamics has bee
considered in which the particles are supposed to move
the graph with a discrete and isochronous~topological! time,
ignoring the different lengths of the bonds composing
graph.

The purpose of the present paper is to develop the the
of the classical dynamics on graphs by considering the
tion of particles in real time. This generalization is importa
if we want to compare the classical and quantum quantit
especially with regard to the time-dependent properties
open or spatially extended graphs. A real-time classical
namics on graphs should allow us to define kinetic and tra
port properties such as the classical escape rates and th
fusion coefficients, as well as the characteristic quantitie
chaos such as the Kolmogorov-Sinai~KS! and the topologi-
cal entropies per unit time.

An important question concerns the nature of class
dynamics on a graph. A graph is a network of bonds
which the classical particle has a one-dimensional unifo
motion at constant energy. The bonds are interconnecte
vertices where several bonds meet. The number of bo
connected with a vertex is called the valence of the vertex

*Present address: Chemical Physics Department, Weizmann
tute of Science, Rehovot 76100, Israel.
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quantum mechanics has been defined on such graphs by
sidering a wave function extending on all the bonds@1,2#.
This wave function has been supposed to obey the o
dimensional Schro¨dinger equation on each bond. The Schr¨-
dinger equation is supplemented by boundary condition
the vertices. The boundary conditions at a vertex determ
the quantum amplitudes of the outgoing waves in terms
the amplitudes of the ingoing waves and, thus, the transm
sion and reflection amplitudes of that particular vertex.

In the classical limit, the Schro¨dinger equation leads to
Hamilton’s classical equations for the one-dimensional m
tion of a particle on each bond. When a vertex is reached,
square moduli of the quantum amplitudes give the probab
ties that the particle be reflected back to the ingoing bond
be transmitted to one of the other bonds connected with
vertex. In the classical limit of arbitrarily short wavelength
the transmission and reflection probabilities do not reduce
the trivial ones~i.e., to 0 and 1! for typical graphs. Accord-
ingly, the limiting classical dynamics on graphs is in gene
a combination of the uniform motion of the particle on th
bonds with random transitions at the vertices. This dyna
cal randomness that naturally appears in the classical lim
at the origin of a splitting of the classical trajectory into
tree of trajectories. This feature is not new and has alre
been observed in several processes such as the ray spl
in billiards divided by a potential step@9# or the scattering on
a wedge@10#. We should emphasize that this dynamical ra
domness manifests itself only on subsets with a dimens
lower than the phase space dimension and not in the bul
phase space so that, the classical graphs share many pr
ties of the deterministic chaotic systems as we shall see
low.

The dynamical randomness of the classical dynamics
graphs requires a Liouvillian approach to describe the ti
evolution of the probability density to find the particle som
where on the graph. Accordingly, one of our first goals b
low will be to derive the Frobenius-Perron operator as w
ti-
©2001 The American Physical Society15-1
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as the associated master equation for the graphs. This o
tor is introduced by noticing that the classical dynamics o
graph is equivalent to a random suspended flow determ
by the lengths of the bonds, the velocity of the particle, a
the transition probabilities.

A consequence of the dynamical randomness is the re
ation of the probability density toward the equilibrium de
sity in typical closed graphs, or to 0 in open graphs or
graphs of infinite extension. This relaxation can be char
terized by the decay rates that are given by solving the
genvalue problem of the Frobenius-Perron operator.
characteristic determinant of the Frobenius-Perron oper
defines a classical zeta function and its zeros—also called
Pollicott-Ruelle resonances—give the decay rates. The le
ing decay rate is the so-called escape rate. The Pollic
Ruelle resonances have a particularly important role to p
because they control the decay or relaxation and they
manifest themselves in the quantum scattering propertie
open systems, as revealed by a recent experiment by Sr
and co-workers@11#. The decay rates are time-depende
properties so that they require to consider the tim
continuous classical dynamics to be defined.

Besides, we define a time-continuous ‘‘topological pre
sure’’ function from which the different chaotic properties
the classical dynamics on graphs can be deduced. This f
tion allows us to define the KS and topological entropies
unit time, as well as an effective positive Lyapunov expon
for the graph.

We shall also show how diffusion can be studied on s
tially periodic graphs thanks to our Frobenius-Perron ope
tor and its decay rates. Here, we consider graphs that
constructed by the repetition of a unit cell. When the cel
repeated an infinite number of times we form a perio
graph. Such spatially extended periodic systems are inte
ing for the study of transport properties. In fact at the cl
sical level it has been shown in several works that relati
ships exist between chaotic dynamics and the nor
transport properties such as diffusion@12# and thermal con-
ductivity @13#, which have been studied in the periodic Lo
entz gas. In the present paper, we obtain the time-continu
diffusion properties for the spatially periodic graphs. Mor
over, we also study the escape rate in large but finite o
graphs and we show that this rate is related, on the one h
to the diffusion coefficient and, on the other hand, to
effective Lyapunov exponent and the KS entropy per u
time.

The plan of the paper is the following. Section II contai
a general introduction to graphs and their classical dynam
In Sec. II B, we introduce the evolution using the aforeme
tioned random suspended flow and, therefore, we can fo
the approach developed in Ref.@12# for the study of relax-
ation and chaotic properties at the level of the Liouvilli
dynamics, which is developed in Sec. III. The Frobeniu
Perron operator is derived in Sec. III A. In Sec. III B, w
present an alternative derivation of the Frobenius-Perron
erator and its eigenvalues and eigenstates, which is base
a master-equation approach, familiar in the context of s
chastic processes. Both approaches are shown to be eq
lent. In Sec. IV, we study the relaxation and ergodic prop
06621
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ties of the graphs in terms of the classical zeta function
its Pollicott-Ruelle resonances. In Sec. V, the large-deviat
formalism is introduced that allows us to characterize
chaotic properties of these systems. In Sec. VI, the theor
applied to classical scattering on open graphs. The cas
infinite periodic graphs is considered in Sec. VII, where
obtain the diffusion coefficient and we show that it can
written in the form of a Green-Kubo formula. In Sec. VII
we consider finite open graphs of the scattering type, wh
the particle escapes to infinity, and we show how the dif
sion coefficient can be related to the escape rate and
chaotic properties. The case of infinite disordered graph
considered in Sec. IX. Conclusions are drawn in Sec. X.

II. THE GRAPHS AND THEIR CLASSICAL DYNAMICS

A. Definition of the graphs

As in Refs.@1,2#, let us introduce graphs as geometric
objects where a particle moves. Graphs areV vertices con-
nected byB bonds. Each bondb connects two verticesi and
j. We can assign an orientation to each bond and define ‘‘
ented or directed bonds.’’ Here one fixes the direction of
bond @ i , j # and callsb5( i , j ) the bond oriented fromi to j.
The same bond but oriented fromj to i is denotedb̂5( j ,i ).

We notice thatb̂̂5b. A graph withB bonds has 2B directed
bonds. The valencen i of a vertex is the number of bonds th
meet at the vertexi.

Metric information is introduced by assigning a lengthl b
to each bondb. In order to define the position of a particle o
the graph, we introduce a coordinatexb on each bondb
5@ i , j #. We can assign either the coordinatex( i , j ) or x( j ,i ) .
The first one is defined such thatx( i , j )50 at i andx( i , j )5 l b at
j, whereasx( j ,i )50 at j andx( j ,i )5 l b at i. Once the orienta-
tion is given, the position of a particle on the graph is det
mined by the coordinatexb where 0<xb< l b . The indexb
identifies the bond and the value ofxb identifies the position
on this bond.

For some purposes, it is convenient to considerb andb̂ as
different bonds within the formalism. Of course, the physic
quantities defined on each of them must satisfy some con
tency relations. In particular, we should have thatl b̂5 l b and
xb̂5 l b2xb .

A particle on a graph moves freely as long as it is on
bond. The vertices are singular points, and it is not poss
to write down the analog of Newton’s equations at the v
tices. Instead we have to introduce transition probabilit
from bond to bond. These transition probabilities introduc
dynamical randomness which is coming from the quant
dynamics in the classical limit. In this sense, the class
dynamics on graphs turns out to be intrinsically random.

The reflection and transmission~transition! probabilities
are determined by the quantum dynamics on the graph. T
latter introduces the probability amplitudesTbb8 for a transi-
tion from the bondb8 to the bondb. We shall show in a
separate paper@14# that the random classical dynamics d
fined in the present paper, with the transition probabilit
defined byPbb85uTbb8u

2 is, indeed, the classical limit of the
quantum dynamics on graphs. For example, we may cons
5-2
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CLASSICAL DYNAMICS ON GRAPHS PHYSICAL REVIEW E63 066215
a quantum graph with transition amplitudes of the form

Tbb85Cbb8S 2

nbb8

2d b̂8b8D ~1!

whereCbb8 is 1 if the bondb8 is connected with the bondb
and 0 otherwise andnbb8 is the valence of the vertex tha
connectsb8 with b. Such probability amplitudes are obtaine
once the continuity of the wave function and the curre
conservation are imposed at each vertex. In Refs.@1–5#,
these graphs are referred to as Neumann graphs. Other
of graphs have also been considered in the literature@2,5,6#
and will be used in the following~see Sec. IX!.

In the present paper, the aim is to develop the theory
the classical dynamics for general graphs defined by a typ
matrix of transition probabilitiesPbb8 with the general prop-
erties discussed below. For the classical dynamics on gra
the energy of the particle is conserved during the free mo
in the bonds and also in the transition to other bonds.
cordingly, the surface of constant energy is considered in
phase space determined by the coordinate of the part
which is xb that specifies a bond and the position with r
spect to a vertex. The momentum is given by the direction
which the particle moves on the bond and its modulus
fixed by the energy. It should be noticed that the position a
the direction are combined together if the position is defin
in a given directed bond. In this way, the phase spac
completely composed of all the positions of all the direc
bonds. The equation of motion is thus

dx

dt
5v5A2E/M for 0,x5xb, l b, ~2!

wherev is the velocity in absolute value,E is the energy, and
M is the mass of the particle. When the particle reaches
endxb85 l b8 of the bondb8, a transition can bring it at the
beginningxb50 of the bondb. According to the above dis
cussion, this transition from the bondb8 to the bondb is
assumed to have the probabilityPbb8 to occur,

transition b8→b with probability Pbb8 . ~3!

By the conservation of the total probability, the transiti
probabilities must satisfy

(
b

Pbb851, ~4!

which means that the vector$1,1, . . . ,1% is always a left
eigenvector with eigenvalue 1 for the transition matrixP
5$Pbb8%b,b851

2B ~see Ref.@2#!.
We may assume that the system has the property of

croscopic reversibility~i.e., of detailed balancing! according
to which the probability of the transitionb8→b is equal to
the probability of the time-reversed transitionb̂→b̂8: Pbb8
5Pb̂8b̂, as expected, for instance, in absence of a magn
field. As a consequence of detailed balancing, the matrixP is
a bistochastic matrix, i.e., it satisfies(bPbb85(b8Pbb851,
whereupon the vector$1,1, . . . ,1% is both a right and left
06621
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eigenvector ofP with eigenvalue 1. This is the case for
finite graph with transition probabilitiesPbb85uTbb8u

2 given
by the amplitudes~1!.

B. The classical dynamics on graphs
as a random suspended flow

The description given above is analogous to the dynam
of a so-called suspended flow@12#. In fact, we can conside
the set of points$xb50,;b%, i.e., the set of all vertices, as
surface of section. We attach to each of these points a
ment ~here the directed bond! characterized by a coordinat
0,x, l b . When the trajectory reaches the pointx5 l b it
performs another passage through the surface. Thus the
is suspended over the Poincare´ surface of section made of th
vertices in the phase space of the directed bonds.

For convenience, instead of the previous notationxb , the
position~in phase space! will be referred to as the pair@b,x#
whereb indicates the directed bond andx is the position on
this bond, i.e., 0,x, l b .

A realization of the random process on the graph~i.e., a
trajectory! can be identified with the sequence of travers
bonds•••b22b21b0b1b2••• ~which is enough to determine
the evolution on the surface of section!. The probability of
such a trajectory is given by

•••Pb2b1
Pb1b0

Pb0b21
Pb21b22

••• .

An initial condition@b0 ,x# of this trajectory is denoted by
the dotted bi-infinite sequence•••b22b21b0b1b2••• to-
gether with the position 0<x, l b0

. For a given trajectory, we

divide the time axis into intervals of durationl bn
/v extend-

ing from

l b0
2x

v
1

l b1

v
1•••1

l bn22

v
1

l bn21

v
to

l b0
2x

v
1

l b1

v
1•••1

l bn22

v
1

l bn21

v
1

l bn

v
,

wherev is the velocity of the particle that travels freely i
the bonds. At each vertex, the particle changes its direc
but keeps its kinetic energy constant.

For a trajectoryp that, at timet50, is at the position
@b0 ,x# we define the forward evolution operatorFp

t with t
.0 by

Fp
t @b0 ,x#5@b0 ,vt1x# if 0 ,x1vt, l b0

, ~5!

i.e., the evolution is the one of a free particle as long as
particle stays in the bondb0, and

Fp
t @b0 ,x#5@bn ,x1vt2 l bn21

2 l bn22
2•••2 l b0

# ~6!

if

0,x1vt2 l bn21
2 l bn22

2•••2 l b0
, l bn

,

5-3
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which follows from the fact that, for the given trajectoryp,
the bond and the position where the particle stands at a g
time is fixed by the lengths traversed at previous times
by the constant velocityv. Analogously, we also introduce
backward evolution fort,0,

Fp
2utu@b0 ,x#5@b0 ,x2vutu# if 0 ,x2vutu, l b0

and

Fp
2utu@b0 ,x#5@b2n ,x2vutu1 l b2n

1 l b2n11
1•••1 l b21

#

if

0,x2vutu1 l b2n
1 l b2n11

1•••1 l b21
, l b2n

.

III. THE LIOUVILLIAN DESCRIPTION

A. The Frobenius-Perron operator

On the graph, we want to study the time evolution of t
probability densityr(@b,x#,t). This density determines th
probabilityr(@b,x#,t)dx of finding the particle in the bondb
with position in @x,x1dx# at time t.

For a general Markov process, the time evolution of
probability density is ruled by the Chapman-Kolmogor
equation

r~j,t !5E dj0P~j,tuj0 ,t0!r~j0 ,t0!, ~7!

whereP(j,tuj0 ,t0) is the conditional probability density tha
the particle be in the statej at timet given that it was in the
statej0 at the initial time t0. This conditional probability
density defines the integral kernel of the time-evolution o
erator, which is linear. The conditional probability dens
can be expressed as a sum~or integral! over all the paths
joining the initial state to the final one within the given lap
of time.

In the case of graphs, each state is given by a direc
bond and a position on this bond:j5@b,x#. A path or tra-
jectory is a bi-infinite sequence of directed bonds as
scribed in the preceding section. As soon as the path or
jectoryp is known, the sequence of visited bonds is fixed
that the motion is determined to be the time translation
velocity v given by Eqs.~5! and~6!. In this case, the condi
tional probability density of finding the particle in positio
@b,x# at time t given it was in@b0 ,x0# at the initial timet0
50 is provided by a kind of Dirac delta densityd(@b,x#
2Fp

t @b0 ,x0#). Along the pathp, the particle meets severa
successive vertices where the conditional probability den
is expressed in terms of the conditional probability to rea
the final bondb5bn within the timet, given the initial con-
dition @b0 ,x0#,

Pp~ t,@b0 ,x0# ![~Pn!bb0
5Pbbn21

Pbn21bn22
•••Pb2b1

Pb1b0
.

~8!

We notice that the integern is fixed by the trajectoryp, the
initial condition @b0 ,x0#, and the elapsed timet. The number
06621
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of the path probabilities~8! that are nonvanishing is alway
finite if there is no sequence of lengths accumulating to z
for the graph under study.

For a graph, the kernel of the evolution operator is th
given by

P~@b,x#,tu@b0 ,x0#,0!5(
$p%

Pp~ t,@b0 ,x0# !

3d~@b,x#2Fp
t @b0 ,x0# !, ~9!

where the sum is performed over a finite number of pat
By analogy with Eq.~7! the density is given by

r~@b,x#,t !5(
b0

E
0

l b0
dx0H(

$p%
Pp~ t,@b0 ,x0# !

3d~@b,x#2Fp
t @b0 ,x0# !J r~@b0 ,x0#,0!

and integrating the Dirac delta density1 we finally get

r~@b,x#,t !5(
$p%

Pp~ t,Fp
2t@b,x# !r~Fp

2t@b,x#,0! ~10!

where the sum is over all the trajectories that go backwar
time from the current point@b,x#.

In this way, we have defined the Frobenius-Perron ope
tor P̂t as

P̂tF@b,x#5(
$p%

Pp~ t,Fp
2t@b,x# !F~Fp

2t@b,x# ! ~11!

where$F@b,x#% is a vector of 2B functions defined on the
directed bonds.

We now turn to the determination of the spectrum of t
Frobenius-Perron operator. With this aim, we take
Laplace transform of the Frobenius-Perron operator given
Eq. ~11!,

E
0

`

e2stP̂tF@b,x#dt

5E
0

`

dte2st(
$p%

Pp~ t,Fp
2t@b,x# !F~Fp

2t@b,x# !.

In order to evaluate the Laplace transform, we have to
compose the sum over the paths$p% into the different classes
of terms corresponding to paths in whichn50,1,2, . . . ,
bonds are visited during the timet. This decomposition leads
to

1We emphasize the analogy with deterministic proc
ses for which P(x,tux0,0)5d@x2f t(x0)# so that r(x,t)
5u]f2t/]xur@f2t(x),0#.
5-4
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(
$p%

E
0

`

e2stPpF~Fp
2t@b,x# !dt

5E
0

x/v
e2stF@b,x2vt#dt1 (

n51

`

(
$p2n%

E
x/v1S i 51

n21l b2 i
/v

x/v1S i 51
n l b2 i

/v

3e2stPp2nFFb2n ,x2vt1(
i 51

n

l b2 iGdt

wherePp2n5Pbb21
Pb21b22

•••Pb2n11b2n
is the probability

of a pathp2n and($p2n% is the sum over these trajectories.
change of variable transforms the previous equation as
lows:

(
$p%

E
0

`

e2stPpF~Fp
2t@b,x# !

5
1

v
e2sx/vH E

0

x

esx8/vF@b,x8#dx8

1 (
n51

`

(
$p2n%

S )
i 51

n

Qb2 i 11b2 i D
3E

0

l b2n
e2s x8/vF@b2n ,x8#dx8J ~12!

where we introduced the quantity

Qbb8~s!5Pbb8e
2slb8 /v ~13!

and here we identifyb0 with b. Now we have to perform the
sum over all the realizations in the right-hand side of E
~12!. This is a sum over all the trajectories

b21b22•••b2n11b2n

that leads to the formation2 of the matrixQn, i.e.,Q raised to
the powern. Accordingly, we get

E
0

`

e2stP̂tF@b,x#dt

5
1

v
e2sx/vH E

0

x

esx8/vF@b,x8#dx8

1 (
n51

`

(
b2n

~Qn!bb2n
E

0

l b2n
esx8/vF@b2n ,x8#dx8J .

~14!

We define the vectorf(s)5$ f 1(s), . . . ,f 2B(s)% with the
components of this vector given by the functions

2(b21•••b2n
Qb0b21

•••Qb2n11b2n
5(b2n

(Qn)b0b2n
06621
l-

.

f b~s!5E
0

l b
esx8/vF@b,x8#dx8. ~15!

The matrixQ(s) acts on these vectorsf(s) through the rela-
tion

~Q•f!b~s!5(
b8

Qbb8~s! f b8~s!. ~16!

This matrix can be interpreted as the Frobenius-Perron
erator of the evolution reduced to the surface of section@12#.
This matrix depends on the Laplace variables that will give
the relaxation rate of the system. With these definitions,
can write

(
n51

`

(
b2n

~Qn!bb2n
E

0

l b2n
esx8/vF@b2n ,x8#dx8

5 (
n51

`

~Qn
•f!b~s!5S Q

I2Q
•fD

b

~s!

where we used the relation(n51
` Qn5Q/(I2Q). As a con-

sequence, Eq.~14! becomes

E
0

`

e2stP̂tF@b,x#dt5
1

v
e2sx/vH E

0

x

esx8/vF@b,x8#dx8

1S Q

I2Q
•fD

b

~s!J . ~17!

We are now at a few steps from determining the eig
values~and eigenvectors! of P̂t. This is done by first study-
ing the solutions of

Q~s!•f~s!5f~s!.

These solutions exist only ifs belongs to the~complex! set
$sj% of solutions of the following characteristic determina

det@ I2Q~s!#50 ~18!

We denote these particular vectors byxj and their compo-
nents byx j@b# with b51, . . . ,2B, whereupon

Q~sj !•xj5xj . ~19!

The left vector, which is adjoint to the right vectorxj , is
given by

Q~sj !
†
•x̃j5x̃j . ~20!

The relation to the eigenvalue problem of the flow is e
tablished as follows. Suppose thatC j@b,x# is an eigenstate
of P̂t with eigenvalueesj t @for the momentsj is not deter-
mined but we call it this way because it will turn out to b
one of the solutions of Eq.~18!#, i.e.,

P̂tC j@b,x#5esj tC j@b,x# ~21!
5-5
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with Resj<0 because the density is not expected to incre
with the time. For the forward semigroup, the zeros of E
~18! are expected in the region Resj<0.

Taking the Laplace transform of Eq.~21!, we get

E
0

`

dte2stP̂tC j@b,x#5E
0

`

dte(sj 2s)tC j@b,x#5
C j@b,x#

s2sj

If we introduce the vectorY(s)5$Y1(s), . . . ,Y2B(s)% de-
fined by the components

Yb~s!5E
0

l b
dxesx/vC j@b,x#

and use the same calculation that led to Eq.~17!, the eigen-
value equation becomes

E
0

x

dx8esx8/vC j@b,x8#1S Q

I2Q
•YD

b

~s!5
vesx/vC j@b,x#

s2sj

~22!

for 0,x, l b . Settingx50 in Eq. ~22!, we have

~s2sj !Q~s!•Y~s!5v@ I2Q~s!#•Cj

with the vectorCj5$C j@b,0#%b51
2B . For s5sj , we get that

Q~sj !•Cj5Cj ,

which shows thatsj is a solution of Eq.~18! as we antici-
pated and that the eigenstate of the flow atx50, C j@b,0#,
may be identified with the vector that is solution of Eq.~19!,

C j@b,0#5x j@b#5(
b8

Qbb8~sj !x j@b8#.

To determine the eigenstates of the flow for the other val
of x we differentiate Eq.~22! with respect tox and we get

esx/vC j@b,x#5
sesx/vC j@b,x#

s2sj
1

vesx/v]xC j@b,x#

s2sj

from which we obtain

]xC j@b,x#52
sj

v
C j@b,x#,

the integration of which gives

C j@b,x#5e2sjx/vC j@b,0#5e2sjx/vx j@b# for 0<x< l b .
~23!

The eigenstate increases exponentially along each dire
bond. This exponential increase does not constitute a p
lem because the time evolution generates the overall e
nential decay of Eq.~21!. Therefore, we see that the vecto
x j@b# that are solutions of Eq.~19! determine the eigenstate
of the Frobenius-Perron operator. These eigenstates are
important in nonequilibrium statistical mechanics since th
provide the link between the microscopic and the pheno
enological description of the system@12#.
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B. A master-equation approach

In this section, we develop an alternative derivation of t
results of the previous subsection using a master equatio

If at a given timet the particle is at the end of a bond, sa
@b8,l b8#, the particle has to go instantaneously to anot
directed bond with probabilityPbb8 , i.e.,

r~@b,0#,t !5(
b8

Pbb8r~@b8,l b8#,t !. ~24!

Now, since the evolution is deterministic along the bon
@see Eq.~5!# we have that3

rS @b,x#,t1
x

v D5r~@b,0#,t !

and also

r~@b8,l b8#,t !5r~@b8,l b82vt8#,t2t8!.

Choosingt85( l b82x8)/v, we have

r~@b8,l b8#,t !5rS @b8,x8#,t2
l b82x8

v D
wherex8 is arbitrary. Hence, Eq.~24! becomes

rS @b,x#,t1
x

v D5(
b8

Pbb8rS @b8,xb8#,t2
l b82xb8

v D
wherexb8 may be chosen arbitrarily on each bondb8. With
the replacementt1x/v→t, we finally obtain

r~@b,x#,t !5(
b8

Pbb8rS @b8,xb8#,t2
x1 l b82xb8

v D .

~25!

This is the master equation that rules the time evolution
the graph. It is a Markovian equation with a time delay. T
master equation~25! differs from Eq.~10! in the sense tha
Eq. ~25! relates the probability densities before and after
transitions although Eq.~10! relates the density at timet to
the initial density through a varying number of transitio
depending on the pathp.

Stationary solutions of Eq.~25!, satisfying r(@b,x#,t)
5 r̃(@b,x#) for all t, exist if the matrixP has an eigenvalue
equal to 1. This is the case for closed graphs. For o
graphs, the density decays in time in a way that we sh
determine below.

The master equation~25! can be iterated. For instance, th
second iteration gives

3This is because r(@b,x#,t1x/v)5 P̂x/vr(@b,x#,t)
5r(F2x/v@b,x#,t)5r(@b,0#,t).
5-6
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r~@b,x#,t !5 (
b8b9

Pbb8Pb8b9rS @b9,xb8b9#,t

2
x1 l b81 l b92xb8b9

v D
and in general

r~@b,x#,t !5 (
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)

3rS @b
(n)

,xb8•••b(n)#,t

2

x1(
i 51

n

l b( i )2xb8•••b(n)

v
D . ~26!
w
h
e

l
ct
-
b-

06621
There exists an integern for which we find~at least one!
solution of

t2
x1 l b91•••1 l b(n)2xb8•••b(n)

v
50

with 0,xb8•••b(n), l b(n) ~27!

for some pathb8b9•••b(n). Accordingly, we split the sum
~26! into two terms, the first one with all the possible pat
for which there exists a valuexb8•••b(n) that solves Eq.~27!
with the smallest integern ((8 denotes the sum over thes
paths! and the other term containing the rest of Eq.~26!, i.e.,
r~@b,x#,t !5 ( 8
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)r~@b
(n)

,xb8•••b(n)#,0!

1 (
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)rS @b
(n)

,xb8•••b(n)#,t2

x1(
i 51

n

l b( i )2xb8•••b(n)

v
D

n
s

t

he
ing
and we proceed iteratively with the second term, that is,
look for the smallestn for which there exists a path for whic
a solution of Eq.~27! exists and so on. Thus we finally hav

r~@b,x#,t !5(
n

(
b8b9•••b(n)

Pbb8Pb8b9•••Pb(n21)b(n)

3r~@b
(n)

,xb8•••b(n)#,0! ~28!

with

xb8•••b(n)5x2vt1(
i 51

n

l b( i ).

Accordingly, r(@b,x#,t) is given by a sum over the initia
conditions@b

(n)
,xb8•••b(n)# and over all the paths that conne

@b
(n)

,xb8•••b(n)# with @b,x# in a time t. Each given path con
tributes to this sum by its probability multiplied by the pro
ability density r(@b

(n)
,xb8•••b(n)#,0). Using the notation in-

troduced before@see Eq.~8!#, Eq. ~28! can be written as

r~@b,x#,t !5(
$p%

Pp~ t,Fp
2t@b,x# !r~@b

(n)
,xb8•••b(n)#,0!

~29!
ewith xb8•••b(n)5x2vt1( i 51
n l b( i ). We see that this equatio

coincides with Eq.~10!, which shows that both approache
are equivalent. In fact, if we write the sequencebb8•••b(n)

in the form bb21•••b2n and if we remember tha
Fp

2t@b,x#5@b2n ,x2vt1( i 51
n l b2 i

# if 0 ,x2vt1( i 51
n l b2 i

, l b2n
, the equivalence is established.

Now we turn to the determination of the spectrum of t
Frobenius-Perron operator from the master equation. Tak
the Laplace transform of Eq.~25! or equivalently of

rS @b,0#,t2
x

v D5(
b8

Pbb8rS @b8,0#,t2
l b81x

v D
we have

E
2x/v

`

e2st8r~@b,0#,t8!dt8

5(
b8

Pbb8e
2slb8 /vE

2x/v2 l b8 /v

`

e2st8r~@b8,0#,t8!dt8

~30!
5-7
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after some simple changes of variable.4 Considering the defi-
nition of Eq. ~13! and thatr(@b,0#,t,0)50, Eq.~30! reads

E
0

`

e2st8r~@b,0#,t8!dt8

5(
b8

Qbb8~s!E
0

`

e2st8r~@b8,0#,t8!dt8. ~31!

Defining

rb~s!5E
0

`

e2str~@b,0#,t !dt

Eq. ~31! becomes

rb~s!5(
b8

Qbb8~s!rb~s!

which has solutions only ifs belongs to the set$sj% of solu-
tions of

det@ I2Q~s!#50

and

xj5Q~sj !•xj . ~32!

The eigenstates of the flow

r j~@b,x#,t !5esj tr j~@b,x#,0! ~33!

are determined as follows. We replace Eq.~33! in the master
equation~25! from where we directly get

$esjx/vr j~@b,x#,0!%5(
b8

Qbb8~sj !$e
sjx/vr j~@b8,x#,0!%.

~34!

Comparing Eqs.~32! and~34! we have that the eigenstates
the Frobenius-Perron operator of the flow are given by

r j~@b,x#,0!5e2sjx/vx j@b# for 0,x, l b

and we have recovered the same results as previously
tained with the suspended-flow approach.

IV. THE RELAXATION AND ERGODIC PROPERTIES

A. The spectral decomposition of the
Frobenius-Perron operator

Thanks to the knowledge of the Frobenius-Perron ope
tor, we can study the time evolution of the statistical av
ages of the physical observablesA@b,x# defined on the
bonds of the graphs as

4At the left-hand sidet85t2x/v and at the right-hand sidet8
5t2x/v2 l b8 /v.
06621
b-
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-

^A& t5 (
b51

2B
1

l b
E

0

l b
A@b,x#r~@b,x#,t !dx5^AuP̂tr0& ~35!

where r0 denotes the initial probability density and whe
we have introduced the inner product

^FuG&5 (
b51

2B
1

l b
E

0

l b
F@b,x#* G@b,x#dx ~36!

between two vectors of 2B functions F@b,x# and G@b,x#
defined on the bonds. Here we have used the fact that
Frobenius-Perron operator rules the time evolution of all
statistical averages. If the observable is equal to unityA
51, the conservation of the total probability imposes t
normalization condition̂ 1& t51, which is satisfied by the
Frobenius-Perron operator.

If we are interested in the time evolution at long times a
especially in the relaxation, we may consider an asympt
expansion valid fort→1` of the form

^A& t5^AuP̂tr0&5(
j

^AuC j&e
sj t^C̃ j ur0&1••• ~37!

as a sum of exponential functions, together with possi
extra terms such as powers of the time multiplied by ex
nentialstm exp(sjt). In this spectral decomposition, we hav
introduced the right and left eigenstates of the Froben
Perron operator

P̂tC j5esj tC j , ~38!

P̂t†C̃ j5esj* tC̃ j . ~39!

Since the Frobenius-Perron operator is not a unitary oper
we should expect Jordan-block structures and associated
states different from the eigenstates. Such Jordan-b
structures are known to generate time dependences o
form tm exp(sjt). We shall argue below that such time beha
ior is not typical in classical graphs.

With the aim of determining the spectral decompositi
~37!, we take its Laplace transform,

E
0

`

e2st^A& tdt5(
j

^AuC j&
1

s2sj
^C̃ j ur0&1•••,

which allows us to identify the relaxation rates2sj with the
poles of the Laplace transform and the eigenstates from
residues of these poles. For this purpose, we use the Lap
transform of the Frobenius-Perron operator given by E
~11!, which we integrate with the observable quant
A@b,x#. We get
5-8



i-
om

le

he
th

t

tion
the
iso-

ed
ues

we
are

-

the

f
ave

d of

r

y.

n
is

,
of

CLASSICAL DYNAMICS ON GRAPHS PHYSICAL REVIEW E63 066215
E
0

`

e2st^AuP̂tr0&dt

5(
b

1

v l b
E

0

l b
dxE

0

x

dx8es(x82x)/vA@b,x#r0@b,x8#

1a~s!T
•

Q~s!

I2Q~s!
•f~s! ~40!

where we introduced the vectora(s) of components

ab~s!5
1

v l b
E

0

l b
e2sx/vA@b,x#dx ~41!

and where we used the definition~15! with the initial prob-
ability densityF5r0.

In Eq. ~40!, the first term is analytic in the complex var
ables and only the second term can create poles at the c
plex valuess5sj where the condition~18! is satisfied. We
suppose here that these poles are simple. Near the pos
5sj , we find a divergence of the form

Q~s!

I2Q~s!
.2

1

s2sj

xj x̃j
†

x̃j
†
•]sQ~sj !•xj

. ~42!

Because of the definition~13!, we have that

x̃j
†
•]sQ~sj !•xj52

1

v (
b

l bx̃ j@b#* x j@b#. ~43!

In this way, we can identify the relaxation rates of t
asymptotic time evolution of the physical averages with
roots of the characteristic determinant~18!. We can also
identify the right eigenstates as

^AuC j&5(
b

x j@b#
1

l b
E

0

l b
e2sjx/vA@b,x#dx, ~44!

which is expected from the previous expression~23! for the
right eigenstates, and the left eigenstates as

^C̃ j ur0&5
1

(
b9

l b9x̃ j@b9#* x j@b9#
(

b
x̃ j@b8#*

3E
0

l b8
esjx8/vr0@b8,x8#dx8. ~45!

From the definition~36! of the inner product, we infer tha
the right eigenstate associated with the resonancesj is given
by the following vector of 2B functions

C j@b,x#5x j@b#e2sjx/v ~46!

while the corresponding left eigenstate is given by
06621
-

e

C̃ j@b,x#5
l bx̃ j@b#

(
b8

l b8x̃ j@b8#x j@b8#*
esj* x/v, ~47!

which ends the construction of the spectral decomposi
under the assumption that all the complex singularities of
Laplace transform of the Frobenius-Perron operator are
lated simple poles.

B. The classical zeta function

The relaxation of the probability density is thus controll
by the relaxation modes that are given by the eigenval
and the eigenstates of the Frobenius-Perron operator. As
said, the eigenvalues of the Frobenius-Perron operator
determined by the solutions$sj% of the characteristic deter
minant @see Eq.~18!#

det@ I2Q~s!#5expF2 (
n51

`
1

n
tr Qn~s!G50. ~48!

These solutions are complex numbers that are known as
Pollicott-Ruelle resonances if they are isolated roots.

We will rewrite Eq. ~18! in a way that is reminiscent o
the Selberg-Smale zeta function. With this purpose we h
to evaluate the trace ofQn in Eq. ~48!. Using Eq.~13! we
find

tr Qn5(
b

~Qn!bb5 (
bb1b2 . . . bn21

Pbbn21
. . . Pb2b1

Pb1b

3e2~s/v !( l bn21
1 . . . 1 l b1

1 l b).

Note that this is a sum over closed trajectories compose
n lengths in the graph. The factor Ap

2

5Pbbn21
. . . Pb2b1

Pb1b plays the role of the stability facto

of the closed trajectorybb1b2 . . . bn21 and following this
analogy, we define the Lyapunov exponentlp per unit time
as

Ap
25exp~2lpTp

(n)!5Pbbn21
. . . Pb2b1

Pb1b ~49!

whereTp
(n) is the temporal period of this closed trajector

We shall consider primitive~or prime! periodic orbits and
their repetitions. A periodic orbit composed ofn lengths can
be the repetition of a primitive periodic orbit composed ofnp
bonds if n5rnp and r is an integer called the repetitio
number. With this definition the total period of the orbit
given byTp

(n)5( l b1
1 l b2

1•••1 l bn21
1 l b)/v5rl p /v, where

l p is the length of the primitive periodic orbit. Accordingly
we have the following relation for the Lyapunov exponent
the prime periodic orbitp5b1b2•••bnp

composed ofnp

bonds,

e2lpl p /v5Pbnp
bnp21

. . . Pb2b1
Pb1bnp

. ~50!

We can thus write
5-9
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tr Qn5 (
pPPn

npe2lp rl p/ve2srlp/v

where we have explicitly considered the degeneracynp of
the orbit due to the number of points~vertices! from where
the orbit can start. Now, with some standard manipulati
~see Ref.@2#!, we can write

det@ I2Q~s!#5Pp@12e2(lp1s) l p /v#[Z~s!, ~51!

which is the Selberg-Smale zeta function for the tim
continuous classical dynamics on graphs. Note that it redu
to the zeta function of Ref.@2# if l b51, ;b.

C. The Pollicott-Ruelle resonances

The zeros of the zeta function~51! are the so-called
Pollicott-Ruelle resonances. The results above show tha
spectrum of the Pollicott-Ruelle resonances controls
asymptotic time evolution and the relaxation properties
the dynamics on the graphs. In general, the zerossj are lo-
cated in the half plane Resj<0 because the density does n
grow exponentially in time.

The spectrum of the zeros of the Selberg-Smale zeta fu
tion allows us to understand the main features of the class
Liouvillian time evolution of a system. Let us compare t
classical zeta function~51! for graphs with similar classica
zeta functions previously derived for deterministic dynam
cal systems@15,16#. For Hamiltonian systems with two de
grees of freedom, the classical zeta function is given by
products:~1! the product over the periodic orbits as in th
case~51! of graphs and~2! an extra product over an intege
m51,2,3, . . . , associated with the unstable direction tran
verse to the direction of the orbit. This integer appears as
exponent of the factor associated with each periodic o
@16#. As a consequence of this extra product, some zero
the zeta function are always degenerate for a reason th
intrinsic to the Hamiltonian dynamics of a system with tw
or more degrees of freedom. Accordingly, Jordan-blo
structures are possible in typical Hamiltonian systems.

In contrast, no such degeneracy of dynamical origin
pears in classical graphs because no integer exponent a
the periodic-orbit factors in Eq.~51!. In general, this prop-
erty does not exclude the possibility of degenerate zeros
may appear for reasons of geometrical symmetry of a gr
or for a particular choice of the parameter values definin
graph. However, such degeneracies are not expected for
cal values of the parameters that are the transition proba
ties Pbb8 and the lengthsl b . Examples will be given below
that illustrate this point. According to this observatio
Jordan-block structures should not be expected in typ
graphs.

Different behaviors are expected depending on whe
the graph is finite or infinite.

1. Finite graphs

Finite graphs are composed of a finite number of fin
bonds. In this case, the matrixQ(s) is finite of size 2B
32B with exponentials exp(2slb /v) in each element. The
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characteristic determinant and therefore the zeta func
~51! is thus given by a finite sum of terms with exponent
functions of s. As a consequence, the Selberg-Smale z
function is an entire function of exponential type in the co
plex variables,

uZ~s!u<K expS L tot

v
usu D

whereK is a positive constant andL tot5(b51
2B l b is the total

length of the directed graph~which is finite by assumption!.
Hence, the zeta function is analytic and has neither poles
other singularities. In general, such a zeta function only
infinitely many zeros distributed in the complex planes.

The finite graphs form closed systems in which the p
ticle always remains at a finite distance without escaping
infinity. For closed systems, we should expect that there e
equilibrium states defined by some invariant measures. S
equilibrium states are reached after all the transient behav
have disappeared in the limitt→1`.

According to the spectral decomposition~37!, the equilib-
rium states should thus correspond to vanishing relaxa
ratessj50. Whether the equilibrium state is unique or not
an important question. In the affirmative, the system is
godic otherwise it is nonergodic. Because of the definit
~13!, we have thatQbb8(0)5Pbb8 so that the values50 is a
root of the characteristic determinant~18! if the matrix P of
the transition probabilities admits the unit value as eig
value. Because of the condition~4!, we know that the unit
value is always an eigenvalue ofP. The question is whethe
this eigenvalue is simple or not. If it is simple, the equili
rium state is unique and the system ergodic otherwise
multiple and the system nonergodic.

In order to answer the question of ergodicity, let us intr
duce the following definition:

P is irreducible iff ;b,b8, 'n : ~Pn!bb8.0.

Then, we have the result thatthe classical dynamics on a
finite graph is ergodic if the matrix of the transition prob
abilities is irreducible.

Indeed, if the transition matrix is irreducible all the bon
are interconnected so that there always existn transitions that
will bring the particle from any bondb8 to any other bondb.
It means that the graph is made of one piece, i.e., the dyn
ics on the graph is said to betransitive. The irreducibility of
the transition matrix implies the unicity of the equilibrium
state because of the Frobenius-Perron theorem@17#, if a ma-
trix has non-negative elements and is irreducible, there i
non-negative and simple eigenvalue that is greater than
equal to the absolute values of all the other eigenvalues.
corresponding eigenvector and its adjoint have strictly po
tive components.

We notice that the transition matrixP is non-negative and
that no eigenvalue is greater than 1 because all the ma
elements obey 0<Pbb8<1 and, moreover, Eq.~4! holds. On
the other hand, we know that the unit value is an eigenva
also because of Eq.~4!. Therefore, if the transition matrix is
assumed to be irreducible, the eigenvalue 1 is simple.
5-10
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cording to Eq.~23!, the equilibrium state of relaxation rat
s050 is given by the unique positive eigenvectorx0
5P•x05Q(0)•x0 corresponding to the simple eigenvalue
as

C0@b,x#5x0@b# for 0,x, l b . ~52!

The corresponding adjoint eigenvector ofP is x̃0@b#51,
;b. The positive componentx0@b# of the right eigenvector
gives the probability to find the particle in the bondb at
equilibrium. These components obey the probability norm
ization(bx0@b#51. This equilibrium state defines an invar
ant probability measure in the space of trajectories,

m~bn21•••b1b0!5Pbn21bn22
•••Pb2b1

Pb1b0
x0@b0#.

~53!

Examples of nonergodic graphs are disconnected gra
The classical dynamics on a closed graph is said to

mixing if there is no pure oscillation in the asymptotic tim
evolution, i.e., if there is no resonance with Resj50 except
the simple resonances050. According to Eq.~44! we have
for a mixing graph that

lim
t→1`

^A& t5(
b

x0@b#
1

l b
E

0

l b
A@b,x#dx. ~54!

An example of a graph that is ergodic but nonmixing is
single bond of lengthg between two vertices. Its zeta func
tion is Z(s)512exp(22sg/v) so that its resonances are

sj5 iv
p

g
j with j PZ.

Excepts050, all the other resonances are pure imaginary
that the dynamics is oscillatory as expected.

2. Infinite graphs of scattering type

The quantum scattering on graphs has been first studie
Ref. @5#. Here, we are interested in the classical limit of t
quantum dynamics on graphs of scattering type. Such infi
graphs can be constructed by attaching semi-infinite leac
to a finite graph. These semi-infinite leads are bonds of i
nite length. As soon as the particle exits the finite part of
graph by one of these leads it escapes in free motion tow
infinity, which is expressed by the vanishing of the followin
probabilities between the semi-infinite leadsc and every
bondb of the finite part of the graph,

Pbc50 ;b

and

Pĉb50 ;b.

Therefore,Qbc5Qĉb50 ;b, and

det~ I2Q!5det~ I2Q̃!
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whereQ̃ is the matrix for the finite part of the graph withou
the scattering leads. Since the leads cause the particl
escape to infinity, the probability for the particle to stay i
side the graph is expected to decay. Therefore, the zero
the Selberg-Smale zeta function are located in the half pl
Resj,0 and there is a gap empty of resonances below
axis Res50: Resj<s0,0. The resonances0 with the larg-
est~or smallest in absolute value! real part is real because th
classical zeta function is real. This leading resonance de
mines the exponential decay after long times that we call
classical escape rategcl52s0 ~or the inverse of the classica
lifetime of a particle initially trapped in the scattering regio
tcl51/gcl). The trajectories that remain trapped form wh
we shall call a repeller because it is the analog of the repe
in deterministic dynamical systems with escape@16#.

An invariant measure can be defined on this repeller
applying the Frobenius-Perron operator to the non-nega
matrix Q̃(s0) evaluated at the leading resonance. This ma
has a leading eigenvalue equal to 1 and the correspon
left and right eigenvectors are positive. A matrix of transiti
probabilities on the repeller can be defined by

Pbb85x̃0@b#Q̃bb8

1

x̃0@b8#
, ~55!

which leaves invariant the probabilities

p@b#5
x0@b#x̃0@b#

x0•x̃0

~56!

of finding the particle of each bondb in its motion on the
repeller. These probabilities obey

(
b

Pbb851 and (
b8

Pbb8p@b8#5p@b# ~57!

and the invariant measure on the repeller is defined as

m~bn21•••b1b0!5Pbn21bn22
•••Pb2b1

Pb1b0
p@b0#.

As an example, consider the graph formed by one bon
lengthg that joins two vertices and two scattering leads
tached to one of these vertices. The repeller consists
only of one unstable periodic orbit. Thus we look for th
complex solutions of

12e2(lp1s) l p /v50,

that is,

lp1s52 iv
2p

l p
j with j PZ

wherel p52g and (l plp /v)52 ln(1/9), which follows from
Eqs.~1! and ~49!. Accordingly, we get

sj52v
ln 9

2g
1 iv

p

g
j with j PZ
5-11
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Therefore, all the resonances have the lifetimetcl
52g/(v ln 9)5g/(v ln 3). This lifetime coincides with the
quantum lifetime obtained from the resonances of the sa
graph @14#. Another system having this peculiarity is th
two-disk scatterer@16#. This property is due to the fact tha
there is only one periodic orbit. In the presence of chaos
thus infinitely many periodic orbits, the quantum lifetim
are longer than the classical ones@14,18#.

V. THE CHAOTIC PROPERTIES

A. Correspondence with deterministic chaotic maps

The previous results show that the classical dynamics o
graph is random. It turns out that this dynamical randomn
is not higher than the dynamical randomness of a determ
istic chaotic system.

In order to demonstrate this result, we shall establish
correspondence between the random classical dynamics
graph and a suspended flow on a deterministic o
dimensional map of a real interval@19#. As aforementioned
the trajectories of the random dynamics on a graph are
one-to-one correspondence with bi-infinite sequences giv
the directed bonds successively visited by the parti
•••b22b21b0b1b2•••, which is composed of integer
1<bn<2B. For simplicity, we shall only consider the futur
time evolution given by the infinite sequenceb0b1b2•••.
With each infinite sequence, we can associate a real num
in the interval 0<y<2B thanks to the formula for the
2B-adic expansion

y5 (
n50

`
~bn21!

~2B!n
. ~58!

Accordingly, the directed bondb8 is assigned to the subinte
val b821,y,b8. Each of these subintervals is subdivid
into 2B smaller subintervals,

Yb21,b8,y,Yb,b8 with Yb,b85Yb21,b81Pbb8 ,

Y0,b85b821, and Y2B,b85b8. ~59!

The one-dimensional map is then defined on each of th
small subintervals by the following piecewise linear functi

yn115f~yn![
1

Pbb8

~yn2Yb21,b8!1b21,

for Yb21,b8,yn,Yb,b8. ~60!

Since the transition probabilities are smaller than
0<Pbb8<1, the slope of the map is greater than
1<df/dy. As a consequence, the map~60! is in general
expanding and sustains chaotic behavior.

The suspended flow is defined over this one-dimensio
map with the following return-time function giving the su
cessive timestn of return in the surface of section,

tn115tn1T~yn! ~61!

with
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T~yn![
l b8
v

for Yb21,b8,yn,Yb,b8 . ~62!

For finite and closed graphs, the invariant measure of
one-dimensional map~60! is equal to

req~y!5pb8 for b821,y,b8. ~63!

For infinite graphs of scattering type, the function~60!
maps the subintervals associated with the semi-infinite le
outside the interval 0<y<2B, generating an escape proces
For such open graphs, the one-dimensional map selects
of initial conditions of trajectories that are trapped forever
the interval 0<y<2B. This set of zero Lebesgue measure
composed of unstable trajectories and is called the repe
Typically, this repeller is a fractal set.

We notice that, for closed graphs, an isomorphism c
even be established between the dynamics in the spac
bi-infinite sequences and a two-dimensional area-preser
map according to a construction explained elsewh
@16,20#.

B. Characterization of the chaotic properties

The chaotic properties can be characterized by quant
such as the topological entropy, the Kolmogorov-Sinai e
tropy, the mean Lyapunov exponent, or the fractal dim
sions in the case of open systems. All these quantities ca
derived from the so-called ‘‘topological pressure’’P(b)
@21#. This pressure can be defined per unit time or equi
lently per unit length since the particle moves with const
velocity v on the graph.

The topological pressure can be defined in analogy w
the definition for time-continuous systems. For this goal,
notice that time is related to length byv5 l /t and that the
role of the stretching factors is played by the inverses of
transition probabilities in the context of graphs. According
the topological pressure per unit time is defined by

P~b![ lim
L→`

v
L

3 ln (
b0•••bn22

L, l b0
1•••1 l bn22

,L1DL

~Pbn21bn22
•••Pb1b0

!b

~64!

where the sum is restricted to all the trajectories that rem
in the graph and do not escape~i.e., on the repeller! and that
have a length that satisfiesL, l b0

1•••1 l bn22
,L1DL ~cf.

Refs.@16,21#!. The dependence onDL disappears in the limit
L→`.

Equation~64! can be expressed by the condition that t
pressure is given by requiring that the following sum is a
proximately equal to one in the limitn→`:
5-12
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1; lim
n→`

(
b0•••bn22

~Pbn21bn22
•••Pb1b0

!b

3e2(1/v)P(b)( l bn22
1•••1 l b0

), ~65!

which is equivalent to requiring that the matrixQ(s;b) com-
posed of the elements

Qbb8~s;b![~Pbb8!
be2slb8 /v ~66!

with s5P(b) has the eigenvalue 1 as its largest eigenva
As a consequence, the topological pressure can be obta
as the leading zero of the following zeta function

Z~s;b!5det@ I2Q~s;b!# ~67!

or, equivalently, as the leading poles5P(b) of the Ruelle
zeta function

zb~s![
1

Z~s;b!
5)

p

1

12e2(blp1s) l p /v
. ~68!

The different characteristic quantities are then determi
in terms of the topological pressure function as follows@16#:
the escape rate is given bygcl52P(1); themean Lyapunov
exponent byl52P8(1); the Kolmogorov-Sinai entropy is
determined byhKS5l2gcl5P(1)2P8(1); the topological
entropy byhtop5P(0); the Hausdorff partial dimension o
the repeller of the corresponding one-dimensional map~60!
is the zero ofP(b), i.e., P(dH)50.

The mean Lyapunov exponent, the escape rate, and
entropies are defined per unit time. The mean Lyapunov
ponent characterizes the dynamical instability due to
branching of the trajectories on the graph. On the other ha
the KS entropy characterizes the global dynamical rand
ness. Both would be equal if the graph was closed and
escape rate vanished. We shall say thatthe dynamics on a
graph is chaotic if its KS entropy is positive, hKS.0. We
emphasize that a dynamics with a positive Lyapunov ex
nent is not necessarily chaotic. A counterexample to this s
position is given by the open graph at the end of the previ
subsection. The repeller of this graph is composed of a sin
periodic orbit and its Lyapunov exponent is equal to t
escape rate:l5gcl5(v ln 3)/g. Accordingly, its KS entropy
vanishes in agreement with the periodicity of this dynami

We notice that the escape rate is related to the lead
Pollicott-Ruelle resonance bygcl52s0. Indeed, whenb
51 the zeta function~67! reduces to the previous one give
by Eq. ~51! that has the Pollicott-Ruelle resonances as
zeros.

Moreover, we have the following properties:~1! The to-
pological entropy is independent of the transition probab
ties Pbb8 of the graph; ~2! The Hausdorff dimension is inde
pendent of the lengths lb of the graph.

The first property is deduced from Eq.~68! when we set
b50 to calculate the topological entropy. In this case,
observe that the Lyapunov exponents disappear from the
function ~68!, which thus depends only on the lengths of t
periodic orbits of the graph. As a consequence, the topol
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cal entropy, which is given by the leading pole of the Rue
zeta function~68! with b50, depends only on the lengths o
the bonds.

The second property can be inferred from Eq.~65! or,
similarly, from the characteristic determinant~67! for the
matrix ~66!. Indeed, since the Hausdorff dimension is t
zero of the pressure function the lengths now disappear w
we sets5P(b)50 in either Eqs.~65! or ~66!. Accordingly,
the Hausdorff dimension depends only on the transit
probabilities.

VI. SCATTERING ON OPEN GRAPHS

We shall consider some examples that illustrate the p
vious concepts. Consider the fully connected pentagon w
L scattering leads attached to each vertex. Quantum sca
ing has been studied for this case in Ref.@5#. Since the to-
pological entropyhtop is independent of the Lyapunov expo
nents it is independent of the number of scattering le
attached to each vertex. This is observed in Fig. 1 where
depict the topological pressure for the fully connected p
tagon.

Moreover, we observe that the escape rategcl52P(1)
for the pentagon withL570 is smaller than the escape ra
for the pentagon withL510. This behavior has a simpl
interpretation. Since we usePbb85u(2/nbb8)2d b̂8b8u

2, the
transmission probability from bond to bond decreases
the reflection probability increases as the valence of the
tex nbb8 increases. Therefore, as the number of leads
creases, a particle on the pentagon has a smaller proba
to escape and a larger probability to be reflected back to
same bond. Accordingly, the escape rate diminishes.

The example of Fig. 2 shows that, indeed, the Hausd
dimension is independent of the bond lengths.

As we see in these examples, the dynamics on typ
graphs is characterized by a positive KS entropyhKS.0. In
this sense, the classical dynamics on typical graphs is c
otic.

FIG. 1. The topological pressure for a fully connected pentag
with L510 andL570 leads attached to each vertex. The velocity
v51.
5-13
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VII. DIFFUSION ON INFINITE PERIODIC GRAPHS

A. The hydrodynamic modes of diffusion

If the evolution of the density in an infinite periodic grap
corresponds to a diffusion process, then the phenomeno
cal diffusion equation should be satisfied in some limit. F
instance, if the periodic graph forms a chain extending fr
x52` to x5` then on a large scale~much larger than the
period of the system! the density profile should evolve ac
cording to the diffusion equation

]r

]t
5D

]2r

]x2
. ~69!

Let us notice thatx is a one-dimensional coordinate of pos
tion along the graph, which isa priori different from the
position along each bond.

This equation admits solutions of the form

rk5exp@s~k!t#exp~ ikx!

with the dispersion relation

s~k!52Dk2 ~70!

that relates the eigenvaluesk to the wave numberk. These
solutions are called the hydrodynamic modes of diffusi
The inverse of the wave number gives the wavelengthl
52p/k of the spatial inhomogeneities of concentration
particles.

For a system such as a graph, we expect deviations
respect to the diffusion equation that only gives the lar
scale behavior of the probability density and not the beha
on the scale of the bonds. Moreover, we may also expec
existence of other kinetic modes of faster relaxation than
leading diffusive hydrodynamic mode. In order to obtain
full description of the relaxation, we have to compute t
eigenvalues of the evolution operator for an infinite perio
graph. One of these eigenvalues will have the dependenc
Eq. ~70! for small k, which allows us to obtain from it the
diffusion coefficient of the chain. We shall start by cons
ering periodic graphs in ad-dimensional space to show th

FIG. 2. The topological pressure for a fully connected penta
with L510. The curve with the crosses is obtained when all bo
are unit of length and the curve with the circles is for a set
incommensurate lengths. The velocity isv51.
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generality of the method but then we will specialize to pe
odic graphs that form one-dimensional chains.

B. Fourier decomposition of the Frobenius-Perron operator

In spatially extended systems that form a periodic latti
spatial Fourier transforms are needed in order to reduce
dynamics to an elementary cell of the lattice@12#. In this
reduction a wave numberk is introduced for each hydrody
namic mode. The wave number characterizes a spatial
siperiodicity of the probability density with respect to th
lattice periodicity. Indeed, the wavelength of the mode do
not need to be commensurate with the size of a unit cel
the lattice. Each Fourier component of the density evol
independently with an evolution operator that depends onk.
Accordingly, the Pollicott-Ruelle resonances will also d
pend onk. We shall implement this reduction starting fro
the master equation~25! of the fully periodic graph and con
struct from it the evolution operator for the unit cell. A fe
new definitions are needed before proceeding with this c
struction.

The periodic graph is obtained by successive repetiti
of a unit cell. Such graphs form a Bravais latticeL. A lattice
vectoram is centered in each cell of the Bravais lattice wi
m5(m1 ,m2 , . . . ,md)PZd. The lattice vectors are given b
linear combinations of the basic vectors of the lattice

am5m1a100•••001m2a010•••001•••1mda000•••01PL

~for a one-dimensional chain we haved51 and am5m
PZ). We shall split the coordinate@b,x#, which refers to an
arbitrary bond in the infinite graph, into the new coordina
(@b,x#,a) where the first pair refers to the equivalent positi
in the elementary unit cell to which the dynamics is reduc
That is, the bond b is associated withb andx is the position
in that bond. The third term represents a vector in the B
vais lattice that gives the true position of the bondb with
respect to the position of the original unit cell, that isb is
obtained by translating the bond b to the cell in the Brav
lattice identified by the vectora. We may introduce the no
tation b5Ta(b) where the translation operatorsTa assign to
a bond b the corresponding bond in the unit cell charac
ized by the vectora.

Accordingly, the density in the graph is represented b
new function5 r related to the old one byr(@b,x#,a,t)
5r(@b,x#,t).

We define a projection operator by

Êk5 (
aPL

exp~2 ik•a!Ŝa, ~71!

in terms of the spatial translation operators

Ŝaf ~@b,x#,a8,t !5 f ~@b,x#,a81a,t ! for a,a8PL.

5We keep callingr this new density.

n
s
f
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The projection operator~71! involves the so-called wave
numberk. This later is defined on the Brillouin zoneB of the
reciprocal latticeL̃. The volume of the Brillouin zone is

uBu5E
B
dk5

~2p!d

udet~a100•••00,a010•••00, . . . ,a000•••01!u
.

The operators~71! are projection operators since

ÊkÊk85uBud~k2k8!Êk ,

which is a consequence of the relation

1

uBu (
aPL

exp~ ik•a!5 (
k8PL̃

d~k2k8!.

The identity operator is recovered by integrating the proj
tion operator over the wave number

Î 5
1

uBu E dkÊk .

If r is the density defined on the infinite phase space,
function Êkr is quasiperiodic on the lattice,

Êkr~@b,x#,a,t !5 (
a8PL

exp~2 ik•a8!r~@b,x#,a1a8,t !

5exp~ ik•a! (
a9PL

3exp~2 ik•a9!r~@b,x#,a9,t !

5exp~ ik•a!Êkr~@b,x#,0,t !

5exp~ ik•a!rk~@b,x#,t !.

We have therefore a decomposition of the density over
infinite phase space into components defined in the redu
phase space and which depends continuously on the w
numberk.

Consider the master equation~25! of the full periodic
graph. Applying the operatorÊk to both sides, we infer from
the quasiperiodicity ofÊkr ~see the previous equation! that

exp~ ik•am!rk~@b,x#,t !5(
b8

Pbb8exp~ ik•am8!

3rkS @b8,x#,t2
x1 l b82x8

v D ,

~72!

whereb5Tam
(b) andb85Tam8

(b8) and alsol b5 l b . Now,
the translational symmetry implies that

Pbb85PTam
(b),Tam8

(b8)5PTam2m8
(b),b8 .

Thus, Eq.~72! becomes
06621
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rk~@b,x#,t !5(
b8

(
m8

PTam2m8
(b),b8

3exp~2 ik•am2m8!

3rkS @b8,x#,t2
x1 l b82x8

v D .

The time evolution of thek-component is therefore con
trolled by the matrix of elements

Pbb8~k![(
m

PTam
(b),b8exp~2 ik•am!. ~73!

We observe that, for a graph, there is at most one term in
sum of Eq.~73!. Indeed, the coefficientPTam

(b),b8 does not

vanish if and only if the bondsTam
(b) and b8 are connected

with the same vertex of the infinite graph. Furthermore, th
is one and only one translationTam

for which Tam
(b) and b8

are connected with the same vertex. Accordingly, there ex
a unique lattice vectora(b,b8) such that

Pbb8~k!5PTa(b,b8)(b),b8exp@2 ik•a~b,b8!#. ~74!

Thanks to this matrix, we have that each Fourier compon
of the density evolves with an equation

rk~@b,x#,t !5(
b8

Pbb8~k!rkS @b8,x#,t2
x1 l b82x8

v D .

~75!

Here the sum is carried out over all the directed bonds of
unit cell and the matrixP(k) of elements Pbb8(k) defined by
Eq. ~74! is a square matrix with dimension equal to the nu
ber of directed bonds in the unit cell.

C. The eigenvalue problem and the diffusion coefficient

To study the eigenvalues of the Frobenius-Perron oper
R̂k

t defined by Eq.~75! we proceed as in Sec. III B. We
introduce the following definitions

rk,s@b#5E
0

`

e2strk~@b,0#,t !dt

and

Qbb8~s,k!5Pbb8~k!expS 2s
l b8
v D ~76!

for the elements of the matrixQ(s,k). Then, taking the
Laplace transform of Eq.~75! we get

rk,s@b#5(
b8

Qbb8~s,k!rk,s@b8#,

which has a solution only if the following classical zeta fun
tion vanishes
5-15
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Z~s;k![det@ I2Q~s,k!#

5)
p

$12exp@2~lp1s!~ l p /v !2 ik•ap#%50

~77!

where the product extends over the prime periodic orbitsp of
the unit cell of the graph and whereap5( i 51

np a(bi 11 ,bi) is
the displacement on the lattice along the periodic orbip
5b1b2•••bnp

of prime periodnp .6 From Eq.~77!, we obtain

the functionssj (k) and the corresponding eigenstatesxj ,k
which satisfy

xj ,k5Q@sj~k!,k#•xj ,k .

Equation ~77! shows that the Pollicott-Ruelle resonanc
sj (k) are the zeros of a new classical Selberg-Smale
function defined for the spatially periodic graphs. The eig
values and eigenstates of the Frobenius-Perron operatoR̂k

t

defined by Eq.~75! are constructed in the same way as
Sec. III B. If we denote byC j ,k@b,x# the eigenstates of th
flow, the results are

R̂k
t C j ,k@b,x#5esj (k)tC j ,k@b,x#

with

C j ,k@b,x#5e2sj (k)
x
vx j ,k@b# for 0,x, l b

wheresj (k) is a solution of Eq.~77!.
For k50, Eq.~75! represents the evolution of the dens

in the unit cell with periodic boundary conditions. The pe
odic boundary conditions transform two bonds in a loop.
this way, fork50, we are studying the evolution of a close
graph and we saw in Sec. III B that, for a closed graph,
values50 is a solution of Eq.~77! and the associated eigen
state corresponds to the invariant measure or equilibr
probability, which is given by the 2B-vector (B being the
number of bonds in the unit cell!

x05
1

2B
~1,1, . . . ,1!. ~78!

We may thus expect that, fork small enough, there exists
zeros0(k) of Eq. ~77! and a corresponding eigenstate

x0,k5Q@s0~k!,k#•x0,k ~79!

such thats0(k)→k→00. This particular resonance can b
identified with the dispersion relation of the hydrodynam
mode of diffusion since this latter is known to vanish atk
50 as

6Here, a(bi 11 ,bi) denotes the jumps over the lattice during t
transition between the bond bi and the bond bi 11. We have to con-
sider thata(bi 11 ,bi)50 for transitions between bonds in the sam
unit cell.
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s0~k!52(
ab

Dabkakb1O~k4!

so that the diffusion matrix is obtained as

Dab52
1

2

]2s0~k!

]ka]kb
U

k50

~80!

D. Example of infinite graph with diffusion

We illustrate the results of this section with a very simp
example of a one-dimensional chain. Consider the gr
used in Sec. IV C 2. This graph of scattering type can
used as a unit cell for a periodic graph. The right lead
connected with the left lead of an equivalent graph and
on. This graph looks like an infinite comb. The unit cell c
be considered as composed by two bonds, sayb anda. The
bondb connects the dead vertex 2 with the vertex 1 and
bond a connects the vertex 1 with the vertex 1 of the ne
cell. Thus the valence of the vertices arev251 andv153,
respectively. The transition probabilitiesPbb8 are given by

Pbb85uTbb8u
2

with Pbb̂51,Pab5 4
9 ,Pb̂b5 1

9 ,Paâ5 1
9 ,Pb̂â5 4

9 ,Pâa5 1
9 , and 0

otherwise. We first construct the matrixP(k). We note from
its definition in Eq.~74! that Pbb8(k)5Pbb8 for bonds that
belong to the unit cell. Thek-dependent factors come from
bonds that connect consecutive cells. These bonds ar
follows.

~1! The bonda of the cell at the left-hand side characte
ized byam521 is connected with the bondsa and b̂. This
gives the contributions Paa(k)5 4

9 e1 ik and Pb̂a(k)5 4
9 e1 ik.

~2! The bondsâ and b of the cell at the right-hand side
characterized byam511 are connected with the bondâ.
This gives the contributions Pââ(k)5 4

9 e2 ik and Pâb(k)
5 4

9 e2 ik.
Therefore,P(k) is the 434 matrix with entries

P~k!53
0 1 0 0

1

9
0

4

9
eik

4

9

4

9
0

4

9
eik

1

9

4

9
e2 ik 0

1

9

4

9
e2 ik

4
where the columns and rows are arranged in the follow
order (b,b̂,a,â). The matrixQ(s,k) is obtained by multipli-
cation with the diagonal matrixdbb8 e2(s/v) l b8. The determi-
nant in Eq.~77! can be computed and gives
5-16
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det@ I2Q~s,k!#511
5

27
e22(s/v)a2

1

9
e22(s/v)g

1
1

9
e22(s/v)(a1g)

2
8

9
e2(s/v)aS 11

e22(s/v)g

3 D cosk

~81!

wherea is the length of the bond a andg is the length of the
bond b. As we said the solutions of det@ I2Q(s,k)#50 gives
the desired functionssj (k). For this example, we plot the
first branches in Fig. 3 where we observe that, indeed, o
one branch includes the points50 at k50. This unique
branch can be identified with the dispersion relation of
hydrodynamic mode of diffusion.

The diffusion coefficient is obtained from the second d
rivative of the first branch atk50. This can be analytically
computed for this particular example as follows. We co
siders!Min$v/a,v/g% andk!1 and expand Eq.~81!. After
some simple algebra, we get

det@ I2Q~s,k!#5
16

27F s

v
~a1g!1k2G1O~s2!1O~sk2!

1O~k4!

from which we obtain that the diffusion coefficient define
by Eq. ~80! is

D5
v

a1g
. ~82!

In general, the diffusion coefficient has the units
@L2#/@T#. This is because the wave number has the units
1/@L#. Since we have consideredk as a dimensionless num
ber, the diffusion coefficient has the units of 1/@T# here. In
this example the standard units can be recovered by con
ering k5ka with a standard wave numberk wherea is the

FIG. 3. The first two branchess(k) of Pollicott-Ruelle reso-
nances of the infinite comb graph, as obtained from Eq.~81!. The
branch containing the origins50 andk50 is the dispersion rela
tion of the diffusive mode. The other branch is associated wit
kinetic mode of faster relaxation.
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period at which the unit cell is repeated. In these units,
would have obtainedD̃5va2/(a1g). But, in general, for a
more complicated graph, there is no bond length that we
associate with the periodicity of the chain as in this examp
which is the reason why we consider the dimensionless
rameterk. In this sense we are considering the space in u
of the unit cell of the periodic chain.

E. A Green-Kubo formula for the diffusion coefficient

In the previous example, we have seen that the diffus
coefficient is inversely proportional to the total length of t
unit cell. This is a general property that follows from a ge
eral expression for the diffusion coefficient that we shall n
obtain. From now on we shall consider one-dimensio
chains.7 Accordingly, k is a scalar wavenumber and n
longer a vector.

Consider the vectorx0,k defined by Eq.~79! and the ei-
genvectorx̃0,k of the adjoint matrixQ@s0(k),k#† defined by

Q@s0~k!,k#†
•x̃0,k5x̃0,k ~83!

or equivalently

x̃0,k
† 5x̃0,k

†
•Q@s0~k!,k# ~84!

This eigenvector satisfies

x̃0,k@b# →
k→0

1. ~85!

Such vectors are normalized as

~ x̃0,k ,x0,k!5(
b

x̃0,k@b#* x0,k@b#51. ~86!

On the other hand, due to Eqs.~79! and ~83!, we have

„x̃0,k ,Q~s0 ,k!•x0,k…51. ~87!

with s05s0(k). Differentiating Eqs.~86! and ~87! with re-
spect tok we get, respectively,

S dx̃0,k

dk
,x0,kD 1S x̃0,k ,

dx0,k

dk D50

and

S dx̃0,k

dk
,x0,kD 1S x̃0,k ,F d

dk
Q~s0 ,k!G•x0,kD1S x̃0,k ,

dx0,k

dk D50

where we have used Eqs.~79! and~83!. These last two equa
tions imply

7The theory developed here is trivially extended for graphs t
display periodicity in higher dimensions by considering the app
priate dimensionality for the vectora.

a

5-17
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S x̃0,k ,F d

dk
Q~s0 ,k!G•x0,kD

5(
b,b8

x̃0,k@b#* F d

dk
Qbb8~s0 ,k!Gx0,k@b8#50.

~88!

Now we compute the derivative ofQ. From Eqs.~76! and
~74!, we have

d

dk
Qbb8~s0 ,k!5F d

dk
Pbb8~k!GexpS 2s0

l b8
v D

2Qbb8~s0 ,k!
l b8
v

ds0

dk
.

Inserting this result into Eq.~88! and taking the limitk→0,
we obtain

ds0

dkU
k50

5

1

2B (
b,b8

dPbb8
dk U

k50

1

2B(
b,b8

Pbb8uk50

l b8
v

,

where we have used the fact that the limitk→0 implies
s0(k)→0, and thatx0,k@b8#→1/2B,x̃0,k@b#→1 because of
Eqs.~78! and~85!. Since(bPbb8uk5051; b8, this reduces to

ds0

dk U
k50

5
v

Luc
(
b,b8

dPbb8
dk U

k50

50 ~89!

whereLuc5(bl b is the total length of the unit cell. The las
equality (50) follows from the fact that the unit cell is con
nected with the neighboring cells in a symmetric way. F
instance, in a one-dimensional chain, the ‘‘fluxes’’ from t
left-hand side equal those from the right-hand side and
derivative with respect tok drops a sign that makes the su
vanishing. The reader can verify this property in the previo
example of the comb graph.

To obtain the diffusion coefficient we need the seco
derivative ofs0(k). Therefore, we differentiate Eq.~88! with
respect tok and evaluate it atk50. After some algebra and
using Eq.~89!, we get

d2s0

dk2 U
k50

5
v

Luc
F(

b,b8

d2Pbb8

dk2 U
k50

1(
b,b8

dPbb8
dk

S 2B
dx0,k@b8#

dk

1
dx̃0,k@b#*

dk
D U

k50
G . ~90!

The explicit form for the diffusion coefficient is obtaine
from Eq. ~90! if we compute the first derivatives of th
eigenstates. We can write the equations that these quan
satisfy. In fact taking the derivative with respect tok of Eqs.
~79! and ~84! we have
06621
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dx0,k@b#

dk
5(

b8

dQbb8
dk

x0,k@b#1(
b8

Qbb8

dx0,k@b8#

dk

and

dx̃0,k@b8#*

dk
5(

b
x̃0,k@b#*

dQbb8
dk

1(
b

dx̃0,k@b#*

dk
Qbb8

whose solutions are

dx0,k@b#

dk
5 (

b8 b9
~ I2Q!bb8

21 dQb8b9
dk

x0,k@b9#,

dx̃0,k@b#*

dk
5 (

b8b9
x̃0,k@b8#*

dQb8b9
dk

~ I2Q!b9 b
21 .

In the limit k→0, these solutions can be written as

dx0,k@b#

dk U
k50

5
1

2B (
b8,b9

(
n50

` F ~Pn!b,b8

dPb8,b9
dk G

k50

and similarly

dx̃0,k@b#*

dk
U

k50

5 (
b8,b9

(
n50

` FdPb8,b9
dk

~Pn!b9,bG
k50

.

Thus, the second term of Eq.~90! becomes

(
b,b8

dPbb8
dk

S 2B
dx0,k@b8#

dk
1

dx̃0,k@b#*

dk
D U

k50

52 (
b,b8 ,b9 ,b-

(
n50

` FdPbb8
dk

~Pn!b8 ,b9

dPb9b-
dk G

k50

.

To evaluate and interpret this result we have to transfo
these expressions. First, we have to consider the deriva
of P(k). This matrix is defined in Eq.~74!. Since only the
nearest neighbors are connected, the lattice vector of
jumps can take only the valuesa(b,b8)50,61 whether the
particle crosses the boundary of the unit cell to the rig
hand cell~11!, or the left-hand one~21!, or it stays in the
same cell~0! during the transition b8→b. Therefore

Pbb8~k!5PTa(b,b8)(b),b8 e2 ika(b,b8).

The derivatives of this matrix are thus

dPbb8
dk

52 ia~b,b8!Pbb8

and

d2Pbb8

dk2
52a~b,b8!2Pbb8 .

Accordingly, the diffusion coefficient is given by
5-18
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D52
1

2

d2s0

dk2 U
k50

5
v

2Luc
(
b,b8

H a~b,b8!2Pbb8 12 (
b9 b-

(
n50

`

3a~b,b8!Pbb8 ~Pn!b8 ,b9 a~b9 ,b- !Pb9 b- J
k50

.

~91!

In order to interpret this formula, we have to remember so
definitions. If an observable is defined overM successive
bonds, its mean value over the equilibrium invariant meas
of the random process is given by

^A&5 lim
N→`

(
b2N•••bN

A~bM21•••b1b0!m~bN•••b2N!.

~92!

If the observableA depends only on two consecutive bon
as it is the case for the jump vectora(b,b8), its mean value
takes the form

^A&5 (
b0b1

A~b1b0!m~b1b0!5 (
b0b1

A~b1b0!Pb1b0
x0@b0#

5
1

2B (
b0b1

A~b1b0!Pb1b0

because of Eqs.~53! and~78!. According to the general defi
nition ~92!, the time-discrete autocorrelation function of
two-bond observable is given by

^AmA0&5 (
b0•••bm11

A~bm11bm!

3A~b1b0!m~bm11bm•••b1b0!.

Because of Eqs.~53! and ~78! again, we get

^AmA0&5
1

2B (
b0b1bmbm11

A~bm11bm!

3Pbm11bm
~Pm21!bmb1

A~b1b0!Pb1b0
. ~93!

The terms of Eq.~91! are precisely of the form of Eq.~93!
with m50 for the first term andm5n11 for the following
ones, and with the observableA5a. Since the process i
stationary we have that̂ana0&5^a0a2n&5^a2na0& where
the last equality follows from the commutativity of the qua
tities a0 anda2n . Therefore, the term with the sum overn in
Eq. ~91! is equal to 2B(n52`,nÞ0

1` ^a0an&. It is now clear that
Eq. ~91! for the diffusion coefficient is

D5
Bv
Luc

(
n52`

1`

^a0an&5
v

2^ l & (
n52`

1`

^a0an& ~94!
06621
e
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where^ l &5Luc/(2B) is the mean bond length of the unit ce
and an50,61 is the jump from one cell to another unde
gone by the particle in motion on the infinite graph.

Equation~94! is nothing else than the Green-Kubo fo
mula for the diffusion coefficient. If we define

vx5
Dx

Dt
5

v

^ l &
a~b,b8!

as the velocity along thex axis that contributes to the trans
port, whereDt5^ l &/v, we can write Eq.~94! in the more
familiar Green-Kubo form

D5
1

2E2`

1`

^vx~0!vx~ t !&dt.

In the time-discrete form~94!, we obtain the result tha
the diffusion coefficient is proportional to the constant velo
ity v and inversely proportional to the mean bond-length o
unit cell. The diffusion coefficient is also proportional to th
sum of the time-discrete autocorrelation of the jumpa from
cell to cell.

VIII. ESCAPE AND DIFFUSION ON LARGE OPEN
GRAPHS

In this section, we shall study the Pollicott-Ruelle res
nances of open graphs characterized by a unit cell, whic
repeated a finite number of times. The particular exam
that we consider is depicted in Fig. 4. We shall focus on
leading resonance that determines the escape rate from
system. We shall show that, for large enough chains~i.e.,
made of several unit cells!, the classical lifetime correspond
to the time spent by a particle that undergoes a diffus
process in the chain before it escapes.

For the graph of Fig. 4, the transition probabilities fro
bond to bondPbb8 are given by

Pbb855
9

25
if the particle is reflected, i.e.,b5b8

4

25
for bondsbÞb8which are connected

0 otherwise.

We have computed the spectrum of Pollicott-Ruelle re
nances for different values of the numberN of unit cells. The
leading resonance controls the asymptotic decay. Since
leading resonance is isolated and at a finite distance from
real axis the decay is exponential as we explained, that

FIG. 4. Open graph forming a chain composed ofN56 identi-
cal unit cells. The five lengths that compose the unit cell take
ferent values.~In this regard, no specific length can be associa
with the periodicity of the chain.!
5-19
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r~ t !;exp~2gclt !

wheregcl is the leading resonance, i.e., the escape rate.
is the generic behavior of the density in a classically cha
open system and we refer to this as the classical decay.

In Fig. 5, we depict the topological pressure for the ch
of Fig. 4 with N57 unit cells.

When the chaotic dynamics is at the origin of a diffusi
process the escape rate is inversely proportional to the sq
of the size of the system, more precisely the following re
tion is expected to hold:

gcl~N!.D
p2

N2
~95!

with D the diffusion coefficient.8 As explained in Sec. V, the
escape rate is related to the mean Lyapunov exponent
the KS entropy of the open chain of sizeN according to

gcl~N!5l~N!2hKS~N!. ~96!

As a consequence of Eq.~95!, we find also for open graphs
known relationship between the diffusion coefficient and
chaotic properties@22#,

D5 lim
N→`

N2

p2
@l~N!2hKS~N!#. ~97!

Here againD is in units of @1#/@T# because we did no
associate a length with the period of the chain and thus
space is in units of the unit cell.

8This relation is obtained by solving the diffusion equation~69! in
a system of sizeN with absorbing boundary conditions at the bo
ders, i.e.,r(0)50 andr(N)50. The mode with the slowest deca
is then given by sin(kx) with k5p/N and, from the dispersion
relation ~70!, we get Eq.~95!. For large systems, whenN→` or
equivalentlyk→0, D(N)[gcl(N)(N/p)2 must approach the diffu-
sion coefficient.

FIG. 5. Topological pressure for the chain of Fig. 4 but w
N57. From this function, we get thathKS'2.9.0 and htop

53.2330.
06621
is
ic

n

are
-

nd

e

e

We have computed the escape rate for chains of diffe
sizes. If the dynamics indeed corresponds to a diffusion p
cess, then Eq.~95! should be verified. In Fig. 6, we plot th
classical lifetimestcl as a function ofN2. Sincetcl51/gcl ,
we observe the dependence ofgcl on N expected from Eq.
~95!. We may conclude from this result that the classic
dynamics in the open chain is the one of a diffusion proce

The diffusion coefficient of the infinite graph can be o
tained as we explained in Sec. VII. We depict in Fig. 7 t
leading and other Pollicott-Ruelle resonances of the infin
graph obtained by numerical calculation as a function of
dimensionless wave numberk. The diffusion coefficient is
given by the second derivative of the leading resona
s0(k) evaluated atk50. In this way, we obtain the numeri
cal result

D50.5318. ~98!

Accordingly, the diffusion coefficient of the infinite chai
gives a reasonable estimate for the proportionality coeffic
betweengcl and 1/N2 for the small chains of Fig. 6~a! and is
a very good estimate for the large chains of Fig. 6~b!.

In Fig. 8, we show how the effective diffusion coefficie
D(N)5gcl(N)(N/p)2 converges to the diffusion coefficien
of the infinite chainD as the chain becomes longer an
longer (N→`).

IX. DIFFUSION IN DISORDERED GRAPHS

In a recent work@6#, Schanz and Smilansky have consi
ered the problem of Anderson localization in a on
dimensional graph composed of successive bonds of ran
lengths with random transmission and reflection coefficie
at the vertices. The classical dynamics corresponding to
quantum model defines a kind of Lorentz lattice gases
studied in Refs.@23,24#. Indeed, these references descri
Lorentz lattice gases consisting of a moving particle trav
ing with allowed velocities6v on a one-dimensional lattice
of scatterers. If the particle arrives at a scatterer it will
transmitted or reflected with probabilitiesp and q512p,
respectively. If the scatterers are randomly distributed
model describes the classical dynamics of the model
Schanz and Smilansky with identical transmission and
flection coefficients at all the scatterers.

The classical dynamics of this model can be analyz
with the methods developed in the present paper, which p
vides the relationship with the cited works on the Loren
lattice gases. Using the methods of Sec. IV, we can w
down the infinite matrixQ(s). The eigenstates of this matri
corresponding to the unit eigenvalue can be obtained by
eration along the chain according tox@b#5exp(slb/2v)ub

andx@ b̂#5exp(slb/2v)ub̂ with

S ub̂

ub
D 5MbS ub21̂

ub21
D ~99!

wherebPZ and the matrix is defined by

Mb5Bb
1/2Vb21Bb21

1/2 ~100!
5-20
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FIG. 6. Lifetime of the chain of Fig. 4 as a
function of the square of its sizeN. ~a! For N
53,4,5,6,7,8, the slope of the linear regression
0.247 403 and Eq.~95! gives an approximate dif-
fusion coefficient D.0.4095. ~b! for N
546,56,66,76,86,106, the slope of the linear r
gression is 0.194 624 7 and Eq.~95! gives a bet-
ter approximationD.0.5205 for the diffusion
coefficient~98!.
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Vb215S 1

pb
2

qb

pb

qb

pb
12

qb

pb

D ~101!

and

Bb5S e1slb /v 0

0 e2slb /vD . ~102!

We notice that detMb51. If the chain was periodicl b5 l , we
would obtain the diffusion coefficientD̃5v lp/(2q) by as-
suming thatub115exp(ikl)ub in Eq. ~99!. In the dilute gas
limit, the mean-field diffusion coefficient for the rando
graph is then given by replacing the bond lengthl by the
mean bond lengtĥl &, leading to

D̃mf5v^ l &
p

2q
. ~103!

For a disordered chain withN scatterers, the Pollicott
Ruelle resonances can be obtained by finding the resona
s for which the following equation is satisfied:

FIG. 7. The first branchess(k) of Pollicott-Ruelle resonances o
the infinite graph corresponding to the open graph of Fig. 4. H
again we observe that there is only one branch that is identified
the hydrodynamic mode of diffusion,s0(k), because it vanishes fo
k50.
06621
ces

S uN11̂

uN11
D 5 )

b51

N

Mb~s!S u1̂

u1
D . ~104!

If the chain closes on itself, we must impose the perio
boundary conditionsuN11̂5u1̂ anduN115u1. If the chain is
open and extended by two semi-infinite leads, we must c
sider the absorbing boundary conditionsuN11̂50 and u1
50.

In Ref. @23#, Ernst et al. have characterized the chaot
properties in such open graphs thanks to the escape-rate
malism by computing the topological pressure function
Sec. V. In Ref.@24#, Appert et al. showed that the spatia
disorder is at the origin of a dynamical phase transition
sociated with a singularity in the pressure function of t
infinite disordered chain.

X. CONCLUSIONS

In this paper, we have introduced and studied the rand
classical dynamics of a particle moving in a graph. We sh
show elsewhere@14# that the dynamics studied here is th
classical limit of the quantum dynamics introduced in Re
@1,2#.

We have shown that the relaxation rates of the tim
continuous classical dynamics can be obtained by a sim
secular equation that includes the lengths of the bonds
the velocity of the particle. This secular equation has be
directly related to the eigenvalue problem of the tim
continuous Frobenius-Perron operator. The secular equa

e
th

FIG. 8. The effective diffusion coefficient D(N)
5gcl(N)(N/p)2 as a function ofN for the open graphs of Fig. 4.
5-21



ro
we
ch
e
h
d

n
ut
th
ic
if-
lu

ic

en
te
life
ve
th

e-
ie
ph

sid-

the
to

tum

or-
as
f

ods
of

nd
up-

er-
ral
y
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can be written as a classical zeta function defined as a p
uct over the periodic orbits of the graphs. In this way,
have been able to define the relaxation rates, as well as
otic properties such as the Lyapunov exponents and the
tropies as quantities per unit of the continuous time. T
chaotic properties are derived from a pressure function
fined for each graph.

For infinite periodic graphs, we have shown how to co
struct the hydrodynamic modes of diffusion and to comp
a diffusion coefficient. Here also, the relaxation rates of
hydrodynamic modes are given by the zeros of a class
zeta function. Moreover, a Green-Kubo formula for the d
fusion coefficient has been deduced from the eigenva
problem for the Frobenius-Perron operator of the class
dynamics on the graph.

When the chain is open by considering a finite segm
connected with scattering leads, the particle escapes af
diffusion process. In this case, we have computed the
time of the metastable states. This classical lifetime is gi
by the inverse of the escape rate, which is related to
diffusion coefficient. Accordingly, a known relationship b
tween the diffusion coefficient and the chaotic propert
@22# is extended to the random classical dynamics on gra
C

E

ev

.
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The case of infinite disordered graphs has also been con
ered.

The interest of these results lies notably in the fact that
classical quantities computed here can be compared
equivalent quantities defined for the corresponding quan
problem, as shown elsewhere@14#.

Recently hierarchical graphs have been introduced in
der to mimic some properties of KAM systems such
power-law time behavior@25#. In the case of a hierarchy o
bond lengths, the isochronous time dynamics of Ref.@2#
should not be applicable and the time-continuous meth
developed in the present paper would be fully relevant and
great importance for such applications.
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